
BigInts

By Ruan Schoeman Gr 9, 2nd training camp 2021



BigInts

A “big integer” (or BigInt for short, also called an arbitrary-sized 
integer) is an integer that can theoretically be any size, though it 
is actually limited by the available memory.
It can be useful when you want to work with really large 
numbers, like computing the factorial of a number (34! is the 
largest factorial that will fit into a 128-bit integer), or when you 
don’t know how large the input to your program will be.



Implementation

 The way I have chosen to implement a BigInt is 
to store two values:
 The length of the integer, which is negative for 

negative numbers
 An array of digits

 I also store the least significant digit first, as this 
simplifies arythmatic.

 I use 32-bit signed integers for the digits, but 
store only use 30 of those bits, for easier 
handling of overflow during arythmatic.



Implementation: Storage

 If I wanted to store 675 and -93 in a base-10 
BigInt it would look something like this:

Length: 3 Digits

5

7

6

Length: -2 Digits

3

9

Units

Tens

Hundreds



Implementation:
Addition algorithm

 If a is negative and b is positive return b + a
● (So that if one number < 0, it is the second number)

 If a == -b, then return 0, because x – x = 0
 If a is 0, return b; If b is 0, return a;
 If both numbers are negative, return -(-a + -b)
 If both numbers are positive, then

● Allocate a list, one digit longer than the largest number, to 
handle overflow

● Then for every i in the range [0, # digits in smallest number) 
add a.digits[i] + b.digits[i] to list[i]
● If list[i] >= the base of the BigInt, then set list[i+1] to one, 

and set list[i] to list[i] % base



Implementation:
Addition algorithm

● Next, for every i in the range [# digits in smallest number, # of 
digits in the largest number) add larger.digits[i] to list[i]
● If list[i] >= the base of the BigInt, then set list[i+1] to one, 

and set list[i] to list[i] % base
● While list[len-1] == 0, subtract one from len

● (avoid trailing zeroes)

● return the BigInt constructed from the list
 If one number is negative

● If the absolute value of the negative number is larger than the 
absolute value of the positive number then return -(-neg + -
pos)

● Allocate a list, as long as the largest number



Implementation:
Addition algorithm

● Then for every i in the range [0, # digits in b) add a.digits[i] - 
b.digits[i] to list[i]
● If list[i] < 0, then set list[i+1] to negative one, and add the 

base of the BigInt to list[i]
● Next, for every i in the range [# digits in b, # of digits in a) add 

a.digits[i] to list[i]
● If list[i] < 0, then set list[i+1] to negative one, and add the 

base of the BigInt to list[i]
● While list[len-1] == 0, subtract one from len

● (avoid trailing zeroes)

● return the BigInt constructed from the list



Addition Example

 Now to add 675 and -93 together:

Length: 3 Digits

0

0

0

+ 5 – 3 = 2



Addition Example

 Now to add 675 and -93 together:

Length: 3 Digits

2

0

0

+ 7 – 9 = -2



Addition Example

 Now to add 675 and -93 together:

Length: 3 Digits

2

-2

0

+ 10base = 8

-1



Addition Example

 Now to add 675 and -93 together:

Length: 3 Digits

2

8

-1 + 6 = 5



Addition Example

 Now to add 675 and -93 together:

Length: 3 Digits

2

8

5



Addition Example

 Now to add 675 and positive 93 together:

Length: 4 Digits

0

0

0

+ 5 + 3 = 8
Length of the 

biggest integer + 
1, to avoid 
overflow

0



Addition Example

 Now to add 675 and positive 93 together:

Length: 4 Digits

8

0

0

+ 7 + 9 = 16

0



Addition Example

 Now to add 675 and positive 93 together:

Length: 4 Digits

8

16

0

% 10base = 6

0

1



Addition Example

 Now to add 675 and positive 93 together:

Length: 4 Digits

8

6

1

0

+ 6 = 7



Addition Example

 Now to add 675 and positive 93 together:

Length: 4 Digits

8

6

7

0

- 1 = 3



Addition Example

 Now to add 675 and positive 93 together:

Length: 3 Digits

8

6

7

0
Deallocated during 

initialization



Implementation: Multiplication



Implementation:
Multiplication algorithm

 If either number is zero, return zero
 If both numbers are negative, return -a * -b
 If a is negative, return -(-a * b)
 If b is negative, return -(a * -b)

 Initialize result to zero
 While b is more than zero

● If b is odd, add a to result
● Add a to itself
● Shift b one bit right

 return result
 (Adapted from Binary Exponentiation)

https://cp-algorithms.com/algebra/binary-exp.html


Implementation:
Division & Modulo



Implementation:
Division & Modulo algorithm

 Assert that b != 0
 If a < 0 and b < 0

● Set result to divMod(-a, -b)
● return (result[0], -result[1])

 If a < 0
● Set result to divMod(-a, b)
● return (-result[0], result[1])

 If b < 0
● Set result to divMod(a, -b)
● return (-result[0], -result[1])

 If b == 1 return (a, 0)
 If a == b return (1, 0)



Implementation:
Division & Modulo algorithm

 If a < b return (0, a)

 Initialize quotient to zero
 While a > b

● Add one to quotient
● Subtract b from a

 Return (quotient, a)



Implementation: Display



Implementation:
To (base 10)

 string algorithm
 If the BigInt is zero, return “0”
 Initialize result to an empty string
 Store whether or not the number is negative in variable neg
 Set i to the absolute value of the number
 While i > 0

● Add ‘0’ + char(i % 10) to the start of the string
● Divide i by ten

 If the number was negative, return “-” + result, otherwise 
return result



Questions



Sources

● cppreference.com
● https://cp-algorithms.com/algebra/binary-exp.html
● https://en.wikipedia.org/wiki/Arbitrary-precision_arithmetic
● https://cp-algorithms.com/algebra/big-integer.html
● https://rushter.com/blog/python-integer-implementation/

● See my C++ implementation on GitHub:
https://github.com/Ruan-pysoft/BigInts

./https::%2Fcppreference.com
https://cp-algorithms.com/algebra/binary-exp.html
https://en.wikipedia.org/wiki/Arbitrary-precision_arithmetic
https://cp-algorithms.com/algebra/big-integer.html
https://rushter.com/blog/python-integer-implementation/
https://github.com/Ruan-pysoft/BigInts

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 27
	Slide 28

